人形機器人的環境感知方案或可類比智能汽車,環境感知是對于環境的場景理解能力, 例如障礙物的類型、道路標志及標線、行車車輛的檢測、交通信息等數據的語言分類。環境 感知需要通過傳感器獲取大量的周圍環境信息,確保對車輛周圍環境的正確理解,并基于此 做出相應的規劃和決策。
同樣地,人形機器人也需要感知系統判斷周遭環境。由于各類環境感知傳感器在感知性 能上各有優劣,大部分企業會采用混合方案。
性能 | 攝像頭 | 毫米波雷達 | 激光雷達 | 超聲波雷達 |
測距/測速 | 可實現測距,但精度較 低 | 縱向精度G,橫向 精度低 | G精度 | G精度 |
感知距離 | 幾十米 | 可達200米以上 | 可達200米以上 | 一般2米以內 |
行人、物體識別 | 通過AI算法識別,但難 以識別非標準障礙物 | 難以識別 | 3D建模,易識別 | 可識別 |
路標識別 | 可識別 | 無法識別 | 無法識別 | 無法識別 |
惡劣天氣 | 易受影響 | 不受影響 | 易受影響 | 不受影響 |
溫度穩定性 | G | G | G | 低 |
運行速度測量能力 | 弱 | 強 | 強 | 一般 |
光照 | 除夜視紅外都影響 | 不受影響 | 不受影響 | 不受影響 |
算法技術成熟度 | G | 較G | 一般 | G |
成本 | 一般 | 較G | G | 低 |
自動駕駛主要應用 場景 | 車道偏離預警、車道保 持系統、盲區監測系 統、前車防撞預警、交 通標志識別、交通信號 懂識別、全景泊車 | 自適應巡航控制系 統、自動剎車輔助 系統 | 實施建立車輛周邊 環境的三維模型 | 泊車輔助 |
資料獲取 | |
服務機器人在展館迎賓講解 |
|
新聞資訊 | |
== 資訊 == | |
» 機器人底盤設計同步驅動結構的輪子裝配 | |
» 移動機器人輪子類型的選擇,輪子的結構和裝 | |
» 輪式引導機器人的輪子設計方案:四種輪子類 | |
» 六腿機器人(六腳)設計案例參考:Laur | |
» 四腿機器人機器狗設計案例參考:AIBO, | |
» 雙腿機器人(雙腳)設計案例:SDR-4X | |
» 單腿機器人的優缺點:不需要協調,難是保持 | |
» 類人形機器人腿的構造與設計:腿的自由度提 | |
» 仿人形腿式移動機器人的優缺點:適合于粗糙 | |
» 迎賓前臺機器人控制系統設計方案:電源系統 | |
» 迎賓機器人外形結構設計方案:卡通形象,觸 | |
» 導引機器人內部之加速度和角加速度傳感器, | |
» 移動機器人內部之速度和角速度傳感器,檢測 | |
» 智能機器人內部之位置角度傳感器,設定位置 | |
» 國家標準丨GB/T 45993-2025 | |
== 機器人推薦 == | |
![]() 服務機器人(迎賓、講解、導診...) |
|
![]() 智能消毒機器人 |
|
![]() 機器人底盤 |
![]() |